Main Control Scheme for Agricultural Picking Robots Based on i.MX8MP CPU Board
With advantages such as modularity, high efficiency, and easy deployment, fully intelligent picking robots have been applied to agricultural fields. From pinpointing to harvesting, from cutting to collecting, it can cover the entire process of agricultural crop picking.
The operational target of agricultural robots is crops, and the characteristics of crops impose higher requirements on the movements of agricultural robots. The end effector of the agricultural robot needs to have flexible handling capabilities when in contact with the operational target. This emphasizes the importance of stability, accuracy, agility, and lightweight in the application of agricultural robots.
Agricultural Robots Main features:
Intelligent navigation: Agricultural harvesting robots are equipped with advanced navigation systems, allowing them to autonomously navigate in farmland, achieve precise positioning, and avoid colliding with obstacles.
Visual perception: Equipped with machine vision system, it can identify the maturity of fruits or vegetables, realize intelligent identification and positioning, and ensure accurate picking operation.
Flexible arm: Equipped with a mechanical arm with multiple degrees of freedom, it can flexibly adapt to fruits of different shapes and sizes to achieve efficient and accurate picking.
Data acquisition: Agricultural picking robot can collect real-time data in farmland, such as soil moisture, plant growth status, etc., which provides a scientific basis for agricultural management.
Automatic charging: Equipped with intelligent charging system, when the power is low, it can automatically return to the charging station, reduce manual intervention and improve operation efficiency.
With the rapid development of agricultural science and technology, the introduction of agricultural picking robots is pushing agricultural production towards a more intelligent and efficient direction. The FETMX8MP-C CPU board is recommended to be used as the main control scheme of the agricultural picking robot. The advantages of the platform are as follows:
- High performance, the CPU uses 1.6GHz quad-core 64-bit Cortex-A53 architecture, which provides the robot with efficient processing capability, enabling it to analyze the data collected in the farmland in real time;
- Built-in powerful neural processing unit (NPU), with a maximum running rate of 2.3 TOPS,provides powerful artificial intelligence computing power for robots;
- Abundant high-speed interface resources: It has two Gigabit Ethernet ports, two USB 3.0/2.0 interfaces, PCIe Gen 3, SDIO 3.0 interface and CAN interface (including one CAN-FD) to meet the high-speed connection needs of various sensors and communication devices, so that the robot can achieve intelligent visual perception and positioning, and improve the accuracy and efficiency of picking;
- All-weather work, the full industrial design ensures the stable operation of the robot in a variety of complex environments, and realizes the agricultural production service of the weather.
With the powerful performance of NXP i.MX8MP processor, agricultural picking robots will continue to evolve in the future to better adapt to the diversity and complexity of agricultural production. This combination will promote the development of modern agriculture in a more intelligent and digital direction, and improve the efficiency and sustainability of agricultural production.